

RFLM-202402QE/F-290

Quasi Active PIN Diode Limiter Module - SMT

Features:

•	Frequency Range:	2.0 to 4.0 GHz
•	High Peak Power Handling:	+60 dBm
•	High Average Power Handling:	+50 dBm
•	Low Insertion Loss:	<0.5 dB
•	Return Loss:	>17 dB
•	Low Flat Leakage Power:	<14 dBm
•	Low Spike Energy Leakage:	<0.5 ergs
•	Surface Mount S- Band Limiter Module :	8mm x 5mm x 2.5mm

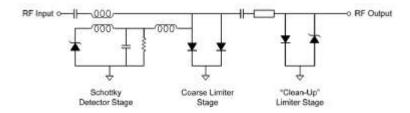
- "Always On Protection"
 - No external control lines or power supply required
- RoHS Compliant

Description:

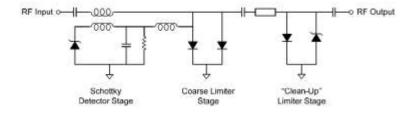
The RFLM-202402QE/F-290 SMT Silicon PIN Diode Limiter Modules offers "Always On" High Power CW and Peak protection in the S-Band region. These Limiter Modules are based on proven hybrid assembly techniques utilized extensively in high reliability, mission critical applications. The RFLM-202402QE/F-290 offers excellent thermal characteristics in a compact, low profile 8mm x 5mm x 2.5mm package. They designed for optimal small signal insertion loss permitting extremely low receiver noise figure while simultaneously offering excellent large input signal Flat Leakage for effective receiver protection in the S Band frequency range.

The RFLM-202402QE/F-290 Limiter Modules provide outstanding passive receiver protection (Always on) which protects against High Average Power up to +50 dBm (CW), High Peak Power up to +60 dBm pulsed, maintains low flat leakage to less than +14 dBm (typ), and reduces Spike Leakage to less than 0.5 ergs (typ).

ESD and Moisture Sensitivity Rating


The RFLM-202402QE/F-290 Limiter Module carries a Class 0 ESD rating (HBM) and an MSL 1 moisture rating.

Thermal Management Features


The proprietary design methodology minimizes the thermal resistance from the PIN Diode junction to base plate (RTHJ-A). The two stage limiter design employs a pre-charging circuit to inject charge into the intrinsic layer of the Coarse Stage High Power PIN Diodes to ensure ultrafast turn on. This circuit topology coupled with the

thermal characteristic of the substrate design enables the Limiter Module to reliably handling High Input RF Power up to +50 dBm (CW) and RF Peak Power levels up to + 60 dBm (25 uSec pulse width @ 5.0% duty cycle) with base plate temperature at +85°C.The RFLM-202402QE/F-290 based substrate has been design to offer superior long term reliability in the customer's application by utilizing ultra-thin Au plating to combat Au embrittlement concerns.

RFLM-202402QE-290: Limiter Module - Input RF Blocking Capacitor Only

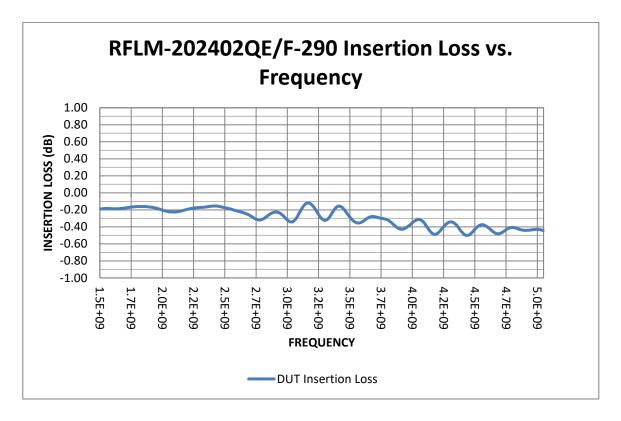
RFLM-202402QF-290: Limiter Module -Input & Output RF Blocking Capacitors

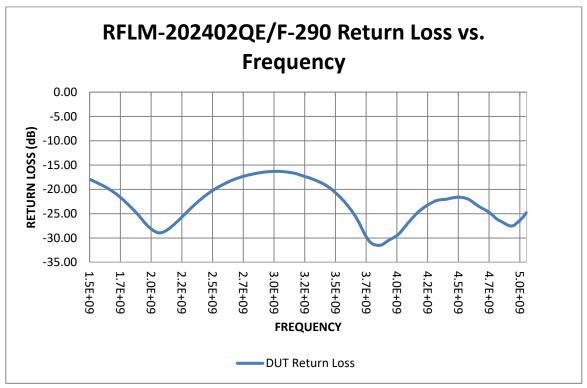
Absolute Maximum Ratings

@ Z_0 =50 Ω , T_A = +25 $^{\circ}$ C as measured on the base ground surface of the device.

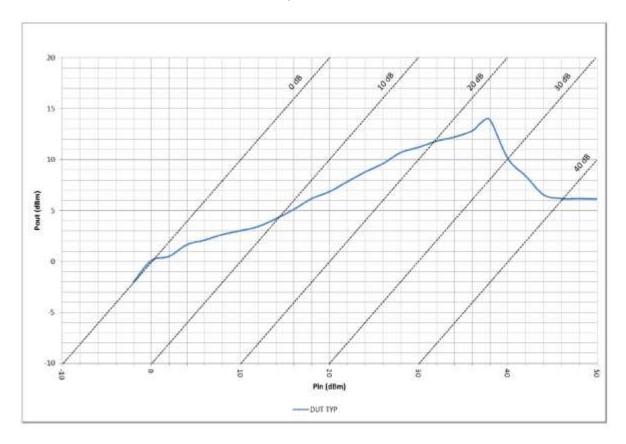
Parameter	Conditions	Absolute Maximum Value
Operating Temperature		-65°C to 125°C
Storage Temperature		-65°C to 150°C
Junction Temperature		175°C
Assembly Temperature	T = 30 seconds	260°C
RF Peak Incident Power	T _{CASE} =+85°C, source and load VSWR < 1.2:1, RF Pulse width = 25 usec, duty cycle = 5%, derated linearly to 0 W at T _{CASE} =150°C (note 1)	+60 dBm
RF CW Incident Power	T _{CASE} =+85°C, source and load VSWR < 1.2:1, derated linearly to 0 W at T _{CASE} =150°C (note 1)	+50 dBm
RF Input & Output DC Block Capacitor Voltage Breakdown		100 V DC

Note 1: T_{CASE} is defined as the temperature of the bottom ground surface of the device.


RFLM202402QE/F-290 Electrical Specifications

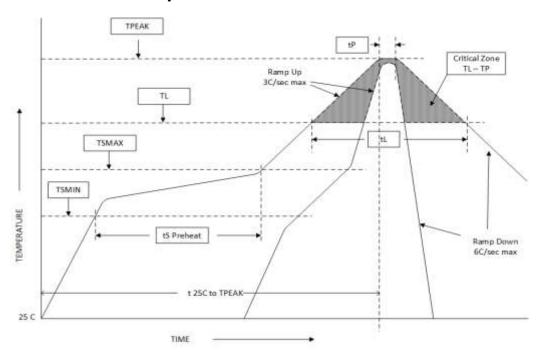

@ Z_o =50 Ω , TA= +25°C as measured on the base ground surface of the device.

Parameters	Symbol	Test Conditions	Min Value	Typ Value	Max Value	Units
Frequency	F	2 GHz ≤ F ≤ 4 GHz	2.0		4.0	GHz
Insertion Loss	IL	2 GHz ≤ F ≤ 4 GHz, P _{in} = -20 dBm		0.5	0.7	dB
Insertion Loss Rate of Change vs Operating Temperature	ΔIL	2 GHz ≤ F ≤ 4 GHz, Pin ≤ -20 dBm		0.005		dB/°C
Return Loss	RL	2.0 GHz ≤ F ≤ 4.0 GHz, Pin= -20 dBm	16	17		dB
Input 1 dB Compression Point	IP _{1dB}	2.0 GHz ≤ F ≤ 4.0 GHz		8		dBm
2 nd Harmonic	2F _o	P _{in} = -20 dBm, F _o = 3.0 GHz		-40	-30	dBc
Peak Incident Power	Pinc (PK)	RF Pulse = 25 usec, duty cycle = 5% , $t_{rise} \le 3us$, $t_{fall} \le 3usec$			60	dBm
CW Incident Power	P _{inc(CW)}	2.0 GHz ≤ F ≤ 4.0 GHz			50	dBm
Flat Leakage	FL	$P_{in} = 60 \text{ dBm}$, RF Pulse width = 25 us, duty cycle = 5%, $t_{rise} \le 3 \text{ us}$, $t_{fall} \le 3 \text{ us}$		14	15	dBm
Spike Leakage	SL	Pin = 60 dBm, RF Pulse width = 25 us, duty cycle = 5%		0.5	0.7	erg
Recovery Time	T _R	50% falling edge of RF Pulse to 1 dB IL, Pin = 60 dBm peak, RF PW = 25 us, duty cycle = 5%, trise \leq 3us, $t_{fall} \leq$ 3usec		1	2	usec

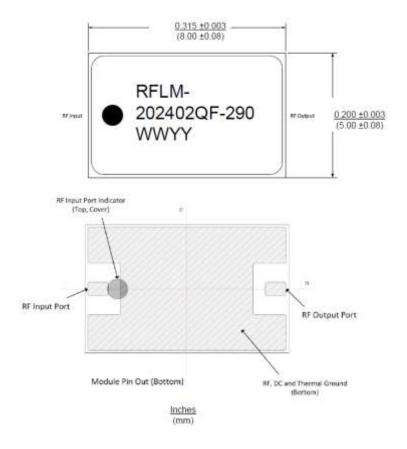

RFLM-202402QE/F-290 Typical Performance

 Z_o = 50 Ω , T _{CASE} = 25°C, PIN = -20 dBm as measured on the Ground Plane of the device.

RFLM-102402QE/F-290: Pin vs Pout

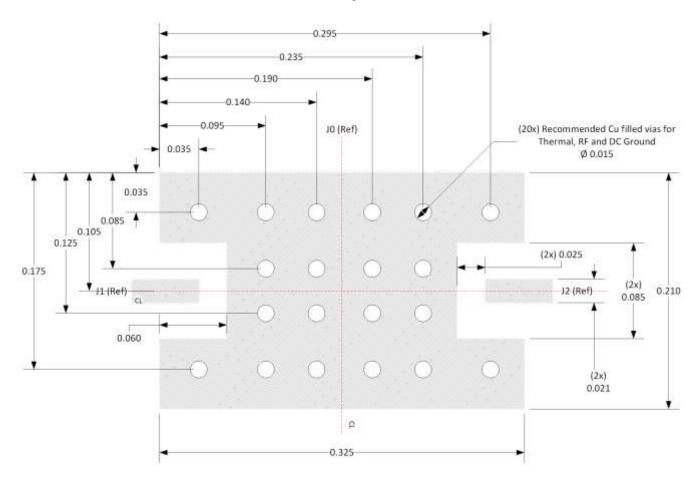


Assembly Instructions


The RFLM-202402QE/F-290may be attached to the printed circuit card using solder reflow procedures using either RoHS or Sn63/ Pb37 type solders per the Table and Temperature Profile Graph shown below:

Profile Parameter	Sn-Pb Assembly Technique	RoHS Assembly Technique
Average ramp-up rate (T_L to T_P)	3°C/sec (max)	3°C/sec (max)
Preheat Temp Min (T _{smin}) Temp Max (T _{smax}) Time (min to max) (t _s)	100°C 150°C 60 – 120 sec	100°C 150°C 60 – 180 sec
T _{smax} to T _L Ramp up Rate		3°C/sec (max)
Peak Temp (T _P)	225°C +0°C / -5°C	260°C +0°C / -5°C
Time within 5°C of Actual Peak Temp (T _P)	10 to 30 sec	20 to 40 sec
Time Maintained Above: Temp (T_L) Time (t_L)	183°C 60 to 150 sec	217°C 60 to 150 sec
Ramp Down Rate	6°C/sec (max)	6°C/sec (max)
Time 25°C to T _P	6 minutes (max)	8 minutes (max)

Solder Re-Flow Time-Temperature Profile

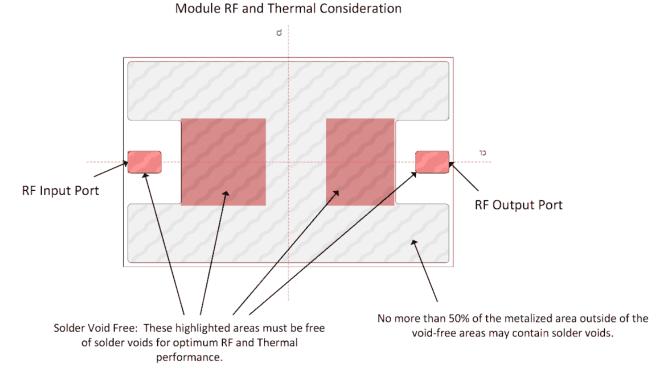

RFLM-202402QE/F-290 Limiter Module Package Outline Drawing

Notes:

- Metalized area on backside is the RF, DC and Thermal ground. In user's end application this surface temperature must be managed to meet the power handling requirements.
- 2) Back side metallization is thin Au termination plating to combat Au embrittlement (Au plated over Cu).
- 3) Unit = mils

Recommended RF Circuit Solder Footprint for the RFLM-202402QE/F-290

Notes:


- 1) Recommended PCB material is Rogers 4350B, 10 mils thick (RF Input and Output trace width needs to be adjusted from the recommended footprint.)
- 2) Hatched area is RF, DC and Thermal Ground. Vias should be solid Cu filled and Au plated for optimal heat transfer from backside of Limiter Module through circuit vias to thermal ground.
- 3) Unit = mils

Thermal Design Considerations:

The design of the RFLM-202402QE/F-290Limiter Module permits the maximum efficiency in thermal management of the PIN Diodes while maintaining extremely high reliability. Optimum Limiter performance and reliability of the device can be achieved by the maintaining the base ground surface temperature of less than 85°C.

There must be a minimal thermal and electrical resistance between the limiter module and ground. Adequate thermal management is required to maintain a Tjc at less than +175°C and thereby avoid adversely affecting the

semiconductor reliability. Special care must be taken to assure that minimal voiding occurs in the solder connection in the areas shade in red in the figure shown below.

Part Number Ordering Detail:

The RFLM-202402QE/F-290 Limiter Module are available in the following shipping formats:

Part Number	Description	Packaging
RFLM-202402QE-290	S-Band Limiter with Input DC Blocking Caps	Gel-Pack
RFLM-202402QF-290	S-Band Limiter with Input & Output DC Blocking Caps	Gel-Pack